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Abstract7

A basic understanding of how the landscape impedes, or creates resistance8

to, the dispersal of organisms and hence gene �ow is paramount for successful9

conservation science and management. Spatially structured ecological networks10

are often used to represent spatial landscape-genetic relationships, where nodes11

represent individuals or populations and resistance to movement is represented12

using non-binary edge weights. Weights are typically assigned or estimated by13

the user, rather than observed, and validating such weights is challenging. We14

provide a synthesis of current methods used to estimate edge weights and an15

overview of common model types, stressing the advantages and disadvantages of16

each approach and their ability to model landscape-genetic data. We further17

explore a set of spatial-statistical methods that provide ecologists with18

alternative approaches for modeling spatially explicit processes that may a�ect19

genetic structure. This includes an overview of spatial autoregressive models,20

with a particular focus on how correlation and partial correlation are used to21

represent neighborhood structure with the inverse of the covariance matrix (i.e.,22

precision matrix). We then demonstrate how to model resistance by specifying23

an appropriate statistical model on the nodes, conditioned on the edge weights,24

through the precision matrix. This integration of network ecology and spatial25

statistics provides a practical analytical framework for landscape-genetic26

studies. The results can be used to make statistical inferences about the27

relative importance of individual landscape characteristics, such as the28

vegetative cover, hillslope, or the presence of roads or rivers, on gene �ow. In29

addition, the R code we include allows readers to explore landscape-genetic30
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structure in their own datasets, which will potentially provide new insights into31

the evolutionary processes that generated ecological networks, as well as32

valuable information about the optimal characteristics of conservation corridors.33

34

35

Key Words: spatial statistics, landscape genetics, spatially structured ecologi-36

cal network, resistance values, edge weights37
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Introduction38

Landscape genetics focuses on the e�ects of landscape pattern, structure, composition, and39

quality on spatial-genetic variation and gene �ow (Storfer et al. 2007). It is a relatively40

new �eld of research (Manel et al. 2003) that draws on concepts from landscape ecology,41

population genetics, mathematics, and statistics. However, truly integrative research is42

challenging in this rapidly advancing �eld, where useful developments are occurring43

simultaneously in multiple disciplines (Balkenhol et al. 2016a). This is especially true of44

methods used to quantitatively describe genetic-landscape structure to gain inferences45

about causal evolutionary and ecological processes.46

In landscape genetics, microsatellite allele and multiple single nucleotide polymorphism47

(SNP) data collected from individuals or populations at multiple locations are often used48

to generate genetic distance or dissimilarity matrices, which are subsequently used to infer49

rates of gene �ow. Many di�erent distance metrics can be used to calculate genetic50

distances between individuals (e.g., Euclidean distance) or populations (e.g., Nei's genetic51

distance; Nei 1972), with each relying on di�erent geometric and/or evolutionary52

assumptions (Dyer, 2017a). These genetic distance matrics are then used to investigate53

how resistance to movement facilitates/prevents the dispersal of organisms and gene �ow54

(Holderegger and Wagner 2008). Within this context, landscape resistance represents the55

e�ects of landscape characteristics such as vegetation or roads, on movement between them56

(Holderegger and Wagner 2008). Evolutionary processes in�uencing resistance typically fall57

into three categories: 1) isolation-by-distance (IBD), where distances between locations are58
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greater than the organisms's dispersal ability (Wright 1943); 2) isolation-by-resistance59

(IBR), which occurs when landscape characteristics lead to inhomogeneous migration rates60

across space (McRae 2006); and 3) isolation-by-barrier (IBB), where landscape features61

such as waterbodies form non-permeable or semi-permeable barriers to movement (Smouse62

et al. 1986). These relationships can be represented as a spatially structured ecological63

network (SSEN; Dale and Fortin 2010), where nodes have a location and size, and edges64

have a physical location and length in geographic space. Thus, the SSEN provides a65

natural, spatially explicit framework used to explore patterns of landscape-genetic66

structure.67

Although inference about the relationship between resistance and genetic structure is the68

focus of many studies, it is rare for resistance values to be measured directly using69

empirical data (Fletcher et al. 2011). When movement is measured, it is typically based on70

detection (i.e., sightings), relocation (i.e., mark-recapture) or pathway (i.e., global71

positioning system telemetry) data (Zeller et al. 2012). However, resistance is more often72

based on a priori experimental evidence (e.g., species dispersal ability based on telemetry73

data) or expert opinion (Beier et al. 2008; Zeller et al. 2012). A causal-modeling approach74

is sometimes used to compare how well the hypothesized resistance values, which are based75

on conceptual models of evolutionary processes, �t the data (Legendre and Troussellier76

1988; Cushman et al. 2006). Resistance estimates are crucial because they de�ne the77

structure of the system and underpin inferences related to dispersal, population de�nition,78

and gene �ow. Yet, there are signi�cant challenges associated with validating79

landscape-connectivity values, given that independent data are often lacking and many80
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combinations of biotic and abiotic processes could produce similar connectivity values81

(Whitlock and McCauley 1999; Dyer and Nason 2004).82

Spatial statistical methods are speci�cally designed to model spatially dependent data and83

may be particularly suited to landscape-genetic studies. In the �eld of statistics, a spatial84

statistical model uses the spatial location of data in the probabilistic model component85

(i.e., spatial dependence in the residual errors is modeled as a function of space). These86

models are sometimes referred to as �spatial error� models in ecology (Keitt et al. 2002).87

Spatial autoregressive (SA) models (Lichstein et al. 2002; Ver Hoef et al. 2018) represent a88

broad class of spatial statistical models implemented as an SSEN. Hence, there are obvious89

conceptual similarities between landscape genetics and SA models. In landscape genetics,90

connectivity among individuals or populations can be represented using non-binary weights91

(i.e., resistance distance or cost-weighted distance) that may or may not incorporate a92

physical distance; while in SA models, relationships among measurements are represented93

in the precision matrix, which is often modeled as a function of Euclidean distance (i.e.,94

relative weight) between locations.95

Our goal is to describe how a spatial statistical approach can be used to model resistance in96

landscape-genetic studies. Speci�cally, we 1) provide an overview of landscape-genetic data97

and their representation as SSENs, 2) provide a brief summary of methods currently used98

to validate models of resistance, including a synthesis of their strengths and weaknesses,99

and 3) demonstrate how resistance distances can be estimated using SA models.100
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Modeling Spatially Structured Ecological Networks101

CALCULATING EDGE WEIGHTS102

A SSEN can be used to represent landscape-genetic relationships, where nodes represent103

the location of individuals or sub-populations, and edges describe the functional104

relationship (e.g., animal movement or gene �ow) between nodes. Thus, the resistance105

distance between nodes may di�er depending on their proximity to one another, as well as106

the landscape characteristics and features that lie between them. Such edge weights are107

usually estimated and then validated using genetic dissimilarity between nodes because108

data describing an organism's movement are rarely available in su�cient quantities to109

describe the SSEN structure (Fletcher et al. 2011).110

Contiguous nodes share a boundary, thus there is no physical distance between them;111

therefore, covariates (i.e., predictors) representing resistance (i.e., resistance covariates) can112

be based on node characteristics, or the distance between node centroids (Hanks and113

Hooten 2013), that have been selected to represent an underlying conceptual model of114

evolutionary processes (e.g., IBD, IBR, and/or IBB; Figure 1). Resistance covariates for115

non-contiguous nodes can also be based on node characteristics (e.g., Botta et al. 2015),116

characteristics of the edges that join node pairs (e.g. Petkova et al. 2016), or both.117

Regardless of which method is used, a priori assumptions must be made about the118

neighborhood structure, the edge location, and/or the resistance values. These assumptions119

a�ect how resistance is represented in the model and the inference that can be made120

(Figure 1).121
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Estimating edge weights for non-contiguous nodes is more complicated than for contiguous122

nodes because the uncertainty associated with the physical edge location in geographic123

space increases as the distance between nodes increases (i.e., multiple potential pathways124

exist). Two approaches are commonly used to address this issue (Figure 1): 1) an a priori125

decision about edge location is made, which de�nes the area over which resistance126

covariates are calculated (e.g., Rioux Paquette et al. 2014); or 2) an a priori decision127

about resistance values is made and edges are delineated based on those values (e.g., Beier128

et al. 2009; Petkova et al. 2016). Many methods are used to parameterize resistance values129

and a full review is beyond the scope of this paper (see Spear et al. (2010) and Zeller et al.130

(2012) for in-depth reviews). However, the commonality among these methods is that a131

priori decisions must be made about the relative importance of individual covariates of132

resistance and/or the physical location of the edge before the edge weights are generated133

(Figure 1). Assigning resistance values is challenging because scienti�c knowledge about134

dispersal and habitat preferences is often lacking. Habitat and dispersal data may be135

unavailable or collected at an inappropriate spatio-temporal resolution (Zeller et al. 2012).136

Resistance values may be assigned based on expert opinion, a literature review, and/or137

empirical data such as species occurrence, individual animal movement, rates of interpatch138

movement, or genetic distance (Beier et al. 2008; Minor and Urban 2008; Zeller et al.139

2012). However, there are obvious consequences in assuming that the drivers of resistance140

and gene �ow are known (Cushman et al. 2006); if this assumption is incorrect, the141

conclusions of the study may be misleading and subsequent management actions may not142

have the desired outcome (Shirk et al. 2010; Spear et al. 2010).143
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COMMON MODELS144

A number of approaches are used to analyze landscape genetic-data, but the most common145

methods generally fall into four categories: computer simulation, matrix correlation,146

ordination, and regression (Figure 2). These methods tend to be borrowed from other147

disciplines (Balkenhol et al. 2016a) and, as such, often do not meet basic modeling needs148

for landscape genetic studies (Figure 2). We are not the �rst to point this out; there have149

been widespread calls from landscape-genetic researchers for more robust methods of150

exploring relationships between genetic diversity and drivers of resistance (Storfer et al.151

2007, Balkenhol et al. 2009; Cushman and Landguth 2010; Manel and Holderegger 2013;152

Balkenhol et al. 2016b). Some of the most common criticisms include the 1) lack of153

statistical power, especially for small sample sizes (Legendre and Fortin 2010); 2)154

parameter bias and low statistical power when tests are performed on spatially dependent155

data (Legendre and Fortin 2010; Wagner and Fortin 2013); 3) inability to assess individual156

components of resistance (e.g., vegetation cover), rather than matrices of dissimilarity, and157

their interactions (Storfer et al. 2007; Beier et al. 2008); and 4) need for a priori decisions158

about resistance values, which constrains the parameter space (Beier et al. 2008),159

regardless of how many resistance models are proposed (e.g., Cushman and Landguth 2010,160

Shirk et al. 2010). Despite the widespread criticisms, these methods continue to be used to161

gain insight into evolutionary and ecological processes because there are few alternatives in162

this emerging �eld of research. At the same time, there is a critical need for 1) suitable163

methods for model selection (Cushman and Landguth 2010; Wagner and Fortin 2013) and164

validation (Dyer and Nason 2004; Balkenhol et al. 2009); 2) statistical methods that can be165

9

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



used to predict when the network is not fully observed (i.e., missing data; Hanks and166

Hooten 2013) or under future land-use or climate scenarios (McRae 2006; Storfer et al.167

2007; Beier et al. 2008); and 3) methods that describe uncertainty in resistance parameter168

estimates (Beier et al. 2008; Zeller et al. 2012; Hanks and Hooten 2013). Thus, clear169

methodological gaps exist and new quantitative methods are needed to make inference170

about the suitability of these mechanistic models of connectivity and their uncertainty, as171

well as the underlying processes that generated the network structure.172

Spatial Autoregressive Models173

Spatial autocorrelation underpins numerous hypotheses in ecological studies (Legendre and174

Fortin 2010); if genetic data do not exhibit a spatial structure, then evolutionary-process175

hypotheses related to IBD, IBR, and IBB are irrelevant. Thus, an approach that makes use176

of spatial autocorrelation (Figure 2), rather than attempting to avoid it, is likely to provide177

a better understanding of landscape-genetic relationships when the data are spatially178

dependent (Balkenhol et al. 2009).179

SA models are spatial statistical models that have been speci�cally designed to model areal180

or network data. The general form of an SA model is {y(si) : si ∈ D, i = 1, ..., M , where y181

is an observed (or unobserved) random variable at node i, at location si, that belongs to182

the spatial domain of interest, D. For example, the random variable could represent allele183

counts, while the domain-of-interest could be a management unit. An SA model di�ers184

from other spatial statistical models (e.g., geostatistical or spatial point process models)185
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because 1) D is a �xed and �nite set of nodes, rather than continuous space and 2) spatial186

dependence is modeled as a function of network structure, rather than Euclidean distance.187

MATRIX REPRESENTATIONS OF NETWORK STRUCTURE188

An SSEN is de�ned by its graphical structure (e.g., nodes and edges connecting nodes)189

and, in a weighted network, by the weights assigned to edges (Figure 3a). To de�ne this190

formally, let G ≡ (V,W) be an SSEN with M nodes, V ≡ {V1, V2, . . . , VM}, and the edges191

or edge weights, W ≡ {wij}, between them. Note that the edge weights could potentially192

be directed (i.e., asymmetric) to account for processes such as source-sink dynamics or193

dispersal preferences (Dale and Fortin 2010). The edges of the SSEN can also be194

represented as an M × M matrix (Figure 3a). The element wij in the ith row and jth195

column of the matrix W is the directed or undirected edge weight connecting nodes i and j196

in the network. In an unweighted graph, connectivity is simply represented using a binary197

adjacency matrix, where wij = 1 and wij = 0 imply that an edge exists or does not exist198

between nodes i and j, respectively. By de�nition, edges do not connect nodes to199

themselves in SA models and therefore diagonal elements are also de�ned as wii = 0. These200

same rules apply in a weighted network, except that wij > 0 indicates that there is an edge201

between two nodes and the strength of connectivity between node pairs is allowed to vary202

(Figure 3a). If the SSEN is undirected, then W is a symmetric matrix and wij = wji.203
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CORRELATION AND PARTIAL CORRELATION204

A key component of an SSEN is the conditional dependence (i.e., structure) implied by the205

edges. When an edge exists between nodes, wij > 0, then nodes i and j are �rst-order206

neighbors and are considered connected (e.g., V1 and V2, Figure 3a). If two nodes are not207

directly connected by an edge, wij = 0, a path between the nodes may still exist through208

intervening nodes (e.g., V2 and V4, Figure 3a). Thus, observations at nodes that are not209

�rst-order neighbors are conditionally independent in the precision matrix (e.g., Q3,2 = 0 in210

Figure 3b).211

A statistical concept strongly related to the network structure de�ned by edges is partial212

correlation. Consider the situation where a process such as genetic variation in individuals213

or populations, y, is measured on nodes. The topological structure implied by the edges214

helps de�ne the correlation structure on the process y. This correlation structure is215

represented by Σ, which is the M × M covariance matrix of y (Figure 3c). Thus, the i, jth216

element of Σ is the covariance between yi and yj:217

Σij = cov(yi, yj) = E [(yi − E(yi))(yj − E(yj))] .

The inverse covariance matrix, or precision matrix, Q = Σ−1, de�nes the partial correlation218

of y after accounting for the in�uence of intervening nodes (Figure 3b). For example, let219

{y1, y2, . . . , yn} be Gaussian observations on an M -node network. The partial correlation220

between yi and yj is de�ned as κij|· = corr(εi|·, εj|·), where εi|· are the residuals from a221

regression with the response yi and {yk, k ̸= i, j} as covariates (e.g., node size or habitat222
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quality)(Figure 3d). If κij|· = 0, then nodes i and j are not �rst-order neighbors and any223

dependence between yi and yj is captured by intervening nodes {yk, k ̸= i, j}. For any224

precision matrix, Qij = 0 if and only if κij|· = 0. Thus, information about local225

connectivity and dependence can be encoded in the precision matrix of a multivariate226

random variable. Note that two nodes may still be correlated through intervening nodes227

and this dependence is captured by the covariance matrix, Σ = Q−1 (Σ3,2 = 0.42, Figure228

3c), which is obtained by inverting Q. This idea is conceptually similar to the role of229

stepping stones, which promote connectivity and facilitate organism movement or gene �ow230

between isolated habitat patches (Saura et al. 2014).231

Partial correlation is not a new concept in ecology; the partial-correlation structure232

accommodated by the precision matrix is increasingly being used to estimate network233

topology, which are subsequently used to understand the in�uence of network structure on234

evolutionary processes (i.e., Population Graphs; Dyer and Nason 2004). However, partial235

correlation and conditional independence in a SSEN can also be modeled as elements of the236

precision matrix in a SA model. In the next section, we provide background information237

about SA models for estimating edge weights using a data-driven approach.238

CAR and ICAR Models239

If the SA model has a Gaussian error distribution, it can be written as240

y = Xα + η + ε , (1)
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where the �error� models are ε ∼ N(0, σ2

εI) and η ∼ N(0,Σ). The mean structure241

describes the conditional mean of the response given a set of covariates, if they are present.242

In Eq. 1, the mean (or �rst moment) structure is modeled using a regression that includes243

covariates, X, as well as a latent spatial-random process, η. The covariates are used to244

account for in�uential processes or conditions that have been measured, while the latent245

spatial-random process is used to describe residual spatial dependence. Thus, spatial246

dependence may result from a lack of understanding about the ecological process, an247

inability to measure in�uential covariates, or inherent spatial dependence in the response248

variable (Keitt et al. 2002). The term η is not directly measured and instead must be249

inferred using a statistical model.250

This model formulation is fundamentally di�erent from most models built to explore251

associations between allele prevalence and landscape features (selection), where there is252

often no mean structure, because typical data come from neutral regions of the genome. In253

contrast, it might be important to include covariates in the model mean structure in a254

landscape genomics study, where allele frequencies from non-neutral regions are a�ected by255

natural selection. In addition, spatial autocorrelation is not a nuisance in landscape-genetic256

studies, but rather the main focus of the analysis. Thus, we often assume that257

y = η ∼ N(0,Σ). We will later consider other data models more appropriate for258

non-Gaussian genetic data, but the Gaussian model serves as a canonical model for spatial259

dependence in SSENs.260

The precision matrix, Q ≡ Σ−1, is used to describe the spatial dependence in the residual261
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errors and, in the case of the conditional autoregressive (CAR) model, we assume:262

Q = D − ρW. (2)

Here, W is a binary or non-binary edge weights matrix, D is a diagonal matrix with263

elements Dii =
∑

k

Wik, and ρ ∈ (0, 1) is a parameter a�ecting correlation. Other equivalent264

forms for the CAR precision matrix have been used in the literature (e.g.,265

Q = τ 2M−1(I−C) for matrices M and C; Banerjee et al. 2004). However, the formulation266

in Eq. 2 highlights the direct link between the edge weights in an SSEN and the precision267

matrix of a spatial CAR model (Figures 3a,b).268

The term �conditional� in the conditional autregressive (CAR) model is used because each269

element of the random process is speci�ed as conditional on those found on all �rst-order270

neighboring nodes, rather than all of the nodes (Figure 3):271

ηi|ηj|j ̸=i ∼ N

(

∑

j

ρWijηj
∑

j ̸=i Wij

,
σ2

∑

j ̸=i Wij

)

. (3)

This conditional representation shows that the conditional mean of ηi is a weighted average272

of its neighbors (ηj : j ∈ N(i), where N(i) is the set of �rst-order neighbors of node i),273

scaled by ρ. If ρ = 0, then each ηi is independent of all other ηi, and there is no spatial274

autocorrelation, while larger values of ρ yield stronger correlation. If Wij > Wik, then the275

mean of ηi is more strongly in�uenced by ηj than by ηk. Thus, proportionally larger edge276

weights imply that there is a stronger functional relationship between nodes. Finally, the277
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conditional variance of ηi is the conditional variance parameter, σ2, over the sum of the278

edge weights connected to node i. Thus, the mean and variance of the spatial random279

process are both nonstationary, varying with node i. The conditional representation also280

makes it clear how to model spatial correlation in SSENs using edge weights and CAR281

models; increasing all edge weights decreases the marginal variance, while proportionaly282

larger edge weights imply stronger connectivity and correlation between nodes.283

Correlation (Figure 3e) is a scaled version of covariance, which also contains information284

about connectivity and dependence within the SSEN. However, the covariance and285

correlation implied by a CAR model are sometimes counter-intuitive (Wall 2004). For286

example, in Figure 3c, the highest covariance is found between V1 and V2, but Figure 3e287

shows that the highest correlation is found between V1 and V4. This discrepancy is due to288

the nonstationary nature of the model; in a CAR model, the least connected nodes have289

high conditional variances (Eq. 3), and often have high marginal variances, which in�ates290

the covariance. Nevertheless, a CAR model provides some intuition on the correlation and291

covariance implied by a SSEN. In this case, V2 is the least connected of all nodes in the292

network (Figure 3a), and thus it makes sense that the correlation with other nodes would293

be relatively small.294

An intrinsic conditional autoregressive model (ICAR; Besag and Kooperberg, 1995) is a295

limiting case of a CAR model, where ρ = 1. In this case, Q = (D − W) is not invertible,296

but the ICAR can still be used as a prior in a Bayesian spatial model (e.g., Cressie 2015).297

The covariance matrix of the ICAR can also be de�ned as the generalized inverse, Q−,298

under the constraint that the spatial-random e�ects sum to a constant (e.g.,
∑n

i=1
ηi = 0)299
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(Rue and Held, 2005).300

MISSING DATA301

In previous sections, we assumed that all nodes in the network were fully observed and that302

one observation, yi, was obtained for each node, but this is unusual in practice. Consider303

the general case where there are nobs total observations at mnodes nodes. When multiple304

observations are collected on nodes (e.g., multiple individuals are genetically sampled305

within a population), a nugget e�ect, τ , can be introduced into the covariance structure306

(Besag et al. 1991) to account for within-node variation. Let y ≡ (y1, y2, . . . , ynobs
)′ be the307

vector of nobs observations from the network and let Σnodes be the mnodes × mnodes308

covariance matrix of the entire network. When there are multiple observations on a node or309

missing data on other nodes, there is not a one-to-one relationship between nodes and310

observations. To account for this mismatch, an nobs × mnodes matrix K is created to �map�311

observations to nodes; Kij = 1 if the ith observation (yi) is taken at the jth node, and312

Kij = 0 otherwise. The matrix K can then be used in the nobs × nobs covariance matrix Ψ313

of the observations y, where314

Ψ = KΣK′ + τ 2I.

Estimation of the edge weights, which de�ne Σ, can then be carried out by substituting Ψ315

for Σ in a CAR or ICAR model.316

The ability to use the entire network in the modeling process has numerous advantages,317

even if it is partially unobserved. Nodes with missing data are usually removed from the318
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analysis, which equates to a loss of information (Nakagawa and Freckleton 2008). If data319

are not missing at random, it alters the topology of the network (Kossinets 2006; Fletcher320

et al. 2011), results in loss of statistical power, and produces biased parameter estimates321

for processes on the network (Nakagawa and Freckleton 2008). A covariance matrix that322

represents all of the network nodes can also be used within a SA model to make323

predictions, with estimates of uncertainty, at unobserved nodes. These predictions provide324

estimates of processes on, and the topology of a network that has not been fully observed325

based on the observed data. However, they can also be used for model validation in a326

k-fold cross-validation procedure. Another important advantage is the ability to327

incorporate nodes with missing data into the statistical model, which means that a328

contiguous data model can be used to estimate resistance; thus, removing the need to make329

a priori and potentially incorrect assumptions about the spatial location of edges between330

non-contiguous nodes (Figure 1). Although there may not be a partial correlation between331

two observed nodes separated by nodes with missing values, spatial dependence may still332

exist because of the intervening nodes in the path between them (Figure 3c).333

Edge Weight Estimation Using Spatial Autoregressive334

Models335

Although SA models are often used in spatial statistics, the speci�cation of weights has336

received little attention. In most cases, weights are arbitrarily described using337

representations of adjacency with little thought devoted to the processes that drive338
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connectivity. When weights are speci�ed in this manner, they are considered �xed and339

known, which implies that the topology of the SSEN is known exactly; however, this is340

almost never the case in ecology. In fact, ecological questions often focus on understanding341

the drivers of landscape connectivity. We reconcile these statistical and ecological342

perspectives, with the goal of gaining a better ecological understanding of resistance in343

SSENs.344

Characteristics on the nodes (e.g., habitat quality, size, or population size) or along the345

edges (e.g., length, vegetation cover, or barriers to movement) may describe346

increases/decreases in landscape connectivity between node pairs. Thus, the resistance347

distance between nodes may, or may not, be solely dependent on the physical distance348

between them. Here we de�ne resistance distance as the cumulative resistance between349

observations based on circuit theory (McRae 2006, Zeller et al. 2012). For example, if the350

nodes are irregularly spaced or irregular in size, it would make sense to model connectivity351

(i.e., edge weights) as a function of distance between nodes. The most natural approach is352

to treat the centroid of each node as the location, and include the distance, or log-distance353

(Hanks and Hooten 2013) beween nodes as a resistance covariate in Eq. (5), with or354

without other resistance covariates.355

An SA model may include a multivariate response, yi, such as microsatellites or multiple356

SNPs for individuals or populations. The CAR or ICAR model can be connected to more357

ecologically relevant network-based approaches when the weights matrix is constructed.358

Instead of de�ning edge weights based on conceptual models of evolutionary processes,359

Hanks and Hooten (2013) showed that they may be estimated by specifying an appropriate360
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statistical model for y, conditioned on the edge weights through the precision matrix. For361

example, edge weights, wij, could be modeled as362

wij =



















0 if i and j are not �rst-order neighbors,

f(xij,β) if i and j are �rst-order neighbors,

(4)

where xij is a vector of covariates used to model the edge weight between i and j (e.g., slope363

or vegetation cover), and β is a vector of estimated parameters. Edge weights are usually364

greater than zero, thus one potential model relating xij and wij is a log-linear model:365

f(xij,β) = exp{x′
ijβ}. (5)

For the IBD model, f(xij,β) ≡ 1 so we obtain an estimated distance-only decay function,366

with no other e�ects, that depends conditionally on �rst-order neighbors; although367

autocorrelation decays with distance throughout the study area (e.g., Ver Hoef et al. 2018).368

Many other model formulations are also possible. For example, in Ver Hoef et al. (2018), β369

was estimated as a function of categorical variables representing di�erences in harbor seal370

sub-population membership. Similarly, the matrix xij could contain extra resistance371

covariates for models representing the IBR (e.g., vegetation cover) and IBB (e.g., rivers)372

evolutionary-process hypotheses, in addition to an intercept.373

As mentioned previously, models are often �t to genetic distance or diversity matrices in374

landscape-genetic studies and these matrices can be generated based on a variety of375

distance metrics. For example, Wright's FST (Wright 1931) and Nei's D (Nei 1972) can be376
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used to describe population-based genetic diversity, while the Bray-Curtis (Legendre and377

Legendre 2012) and other measures of relatedness (Queller and Goodnight 1989) are378

typically used to measure individual-level genetic diversity. However, the advantages of379

modeling genetic distance using an SA model as described here are only realized if there is380

an appropriate statistical distribution for an observed distance matrix and the covariance381

matrix. The generalised Wishart distribution has been used in recent landscape-genetic382

studies to visualise patterns of population structure (Bradburd et al. 2016) and to estimate383

ancestry proportions from multiple populations (Bradburd et al. 2018). McCullagh (2009)384

showed that a generalized Wishart distribution is the appropriate statistical model if the385

genetic distance matrix, D, is based on squared-Euclidean distance of a normally386

distributed random variable (Appendix S1). Under these assumptions, −D ∼ GWν(1,2Σ),387

where Σ = Q−1. However, there is no guarantee that the generalized Wishart distribution388

will be appropriate for all dissimilarity matrices and future research is needed to develop389

diagnostic tools to check the validity of these distributional assumptions. The advantage of390

this approach is that it provides a formal statistical likelihood for pairwise distance data.391

This makes the whole range of likelihood-based tools such as maximum likelihood392

estimation, asymptotic con�dence intervals on parameters, and model selection using393

Akaike's information criterion (AIC; Akaike 1974) and other information criteria applicable394

to genetic analyses. Another major bene�t is that the parameter estimates, β (Eq. 5), are395

comparable between di�erent populations and studies. As a result, it is possible to �t396

similar models to multiple disparate populations and assess how consistent the397

landscape-genetic relationships are.398
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Under a CAR model, the edge weights W and the parameter ρ completely de�ne Q and Σ399

(Figures 3b,c), and the likelihood of the data under the generalized Wishart model.400

Multiple conceptual models of connectivity could be speci�ed using di�erent formulations401

of W or Σ and compared using AIC. This provides a �exible modeling framework, where402

genetic data on the nodes are converted to genetic data on the edges (e.g., genetic-distance403

matrices), and modeled as a function of covariates on the nodes (e.g., node or404

neighborhood level) and/or edges of the SSEN. This method does not �t neatly into the405

four levels of analysis proposed by Wagner and Fortin (2013) to relate genetic data to406

landscape data (e.g., node, link, neighborhood, and boundary). Instead, we refer to it as a407

network-based method because it can be used to represent all four levels of analysis,408

depending on how the model is parameterized and the research question of interest.409

SIMULATED EXAMPLE410

Observed genetic patterns may be produced by the combined in�uence of geographic411

distance, resistance, and barriers, rather than a single evolutionary process (Landguth and412

Cushman 2010). The SA model can be used to account for proximity in terms of variables413

on nodes and/or edges, physical distance (e.g., Euclidean or least-cost path), and414

unobserved drivers of landscape connectivity. Next, we provide an example demonstrating415

how edge weights can be estimated within an ICAR model by incorporating resistance416

covariates into the o�-diagonal elements of the precision matrix. We provide data (dataS1417

and dataS2) and R code (dataS1 and Appendix S2) so that readers can recreate the418

example.419
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We simulated resistance surfaces for the IBD, IBR, and the IBB scenarios (Figure 4,420

Appendix S2). The locations for 30 subpopulations were randomly generated and the421

pairwise resistance distance was calculated based on the IBD, IBR, and IBB models422

(Appendix S2). This distance is equivalent to the cumulative resistance between423

population locations based on circuit theory (McRae et al. 2008).424

Genetic data were simulated under the IBD, IBR, and IBB evolutionary-process models for425

450 individuals (30 subpopulations x 15 individuals) using the PopGenReport package426

(Adamack and Gruber 2014, Appendix S2). Genetic distance matrices for individual allele427

counts were calculated for the simulated datasets based on Manhattan distance.428

We �t three models (IBD, IBR, and IBB) to each of the genetic-distance matrices (DIBD,429

DIBR, DIBB) using a generalized Wishart distribution (Appendix S1). The nine models had430

the form431

−D ∼ GWν(1,2Ψ), (6)

where GW is the generalised Wishart distribution and ν = 20 represents the number of432

genetic loci used to compute D.433

The SA models were �t using a raster-based network representation, with contiguous nodes434

and edge weights (and corresponding o�-diagonal elements of the ICAR precision matrix) a435

function of the distance between node centroids, and the resistance value at neighboring436

raster cells estimated from the data. The spatial covariance for the models was given by437

Ψ = KQ−K′ + τ 2I, (7)
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where K is a design matrix linking observations to nodes (raster cells) in the SSEN, τ 2
438

models non-spatial variability, and Q is an ICAR precision matrix (Eq. 2), with edge439

weights a function of resistance covariates, xij, as shown in Figure 4.440

The edge weights were modeled as a log-linear function of an intercept only for the IBD441

model, an intercept and a continuous resistance covariate for the IBR model, and an442

intercept and a binary covariate representing a non-permeable barrier to movement for the443

IBB model (Figure 4). Notice that the IBR and IBB models account for both resistance444

covariates and the distance between individuals, while the IBD model is based purely on445

distance. Parameters were estimated using maximum likelihood.446

We compared the models using AIC (Akaike 1974) and found that for DIBD, the data447

generating model (IBD) had slightly more support in the data than the IBR estimating448

model, and considerably more support than IBB (Table 1). This is not surprising based on449

the patterns observed in the simulated genetic distance versus resistance plots (Appendix450

S2). However, there was no question about which models had the most support in the data451

for DIBR and DIBB. The AIC value for the IBR data-generating model was more than 14452

units lower than the competing IBD and IBB estimating models for DIBR, while the AIC453

for the DIBB data-generating model (IBB) was more than 56 units lower than alternative454

IBD and IBR estimating models (Table 1).455

The exponentiated β parameter estimates produced by the �nal models describe the456

relationship between the conductance (i.e., 1/resistance) and the original resistance457

covariates (Figure 4) and this relationship can be plotted, with 95% con�dence intervals.458

Figure 5a shows that the relationship between conductance and the resistance covariate459
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described by the �tted DIBR data-generating model is non-linear, which is not surprising460

given that a log-linear model was used. As expected, conductance through cells with low461

IBR resistance-covariate values is higher than those with larger values, with conductance462

dropping o� rapidly as resistance increases from 1 to 5. The 95% con�dence intervals show463

that there is more uncertainty about this relationship when resistance is moderate (e.g., 5464

to 10) compared to when it is low or high (Figure 5a). The relatively low AIC value for465

this model (Table 1) indicates that the DIBR data-generating model was able to describe466

this relationship more accurately than the other models and thus provides greater insight467

into the relationship between the IBR resistance covariate and simulated gene �ow.468

Furthermore, maps of conductance generated using the SA model (Figure 5b) could be469

used to de�ne movement corridors between conservation reserves or examine scenarios of470

land-management impacts on gene �ow (e.g., McRae et al. 2008; Landguth and Cushman471

2010).472

Considerations473

The bene�t of using SA models with SSENs is the ability to model spatially dependent data474

and gain statistically robust inferences. However, the advantages gained in �tting a SA475

model strongly depend on the genetic distance matrices containing su�cient information to476

estimate edge weights. In other words, there must be relatively strong spatial dependence477

in the data and this is a�ected by both the genetic and �eld survey design.478

Genetic data are collected from individuals at multiple locations in landscape-genetic479
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studies, and often transformed into a genetic distance matrix prior to modelling. These480

matrices are usually based on a subset of alleles found on neutral loci (i.e., microsatellite481

alleles or SNPs) that have no known function and as such, are not believed to be involved482

in natural selection (Wagner and Fortin 2013). Instead, the variability in the genetic data483

should re�ect genetic drift; highlighting the in�uence of landscape resistance on gene �ow484

and population structure. There are numerous �ltering steps designed to reduce the485

negative e�ects of sequencing errors, missing data, duplicated loci, linkage disequilibrium,486

deviations from Hardy-Weinberg equilibrium, and polymorphism (Benestan et al. 2016).487

As noted by the authors, these choices can a�ect inferences in models �t to genetic data,488

but �ltering decisions will be dependent on the dataset and the research question of interest489

(Andrews et al. 2016). The initial choice of alleles was particularly important in the past,490

when it was often cost prohibitive to sample more than 20 loci (Waits and Storfer 2016).491

However, with the advent of next generation sequencing, it is not uncommon to obtain492

genetic data at tens of thousands of loci. As a result, genetic sampling is expected to be493

the least limiting factor in future landscape-genetic studies (Balkenhol and Fortin 2016).494

The �eld survey design is another important consideration, but the optimal design is495

expected to di�er depending on the environment and species-of-interest (Balkenhol and496

Fortin 2016). The number of individuals must be su�cient to represent the genetic497

diversity in the population and appropriate for the research question (Waits and Storfer498

2016). If the genetic diversity is low, then it may be captured with a relatively small499

number of individuals and alleles; while more individuals and alleles will be required when500

genetic diversity is high. In rare cases, power analysis is used to identify the minimum501
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sample size needed (Ryman and Palm 2006). Simulation studies can also help identify the502

minimum number of individuals and sub-populations needed to detect the e�ects of503

distance and landscape resistance on gene �ow (Manel et al. 2012). General rules of thumb504

have been proposed, suggesting that 20 to 30 individuals are needed when using505

microsatellite data (Hale et al. 2012). However, these numbers are insu�cient for the SA506

models described here. Instead, larger minimum sample sizes are needed (>100507

observations in our experience) due to the additional parameters being estimated and the508

loss of e�ective degrees of freedom. Larger sample sizes may also be needed as the509

complexity of the edge-weights model increases. Nevertheless, sample size may not be an510

issue in many studies, where researchers have arti�cially decreased the sample size by511

aggregating genetic data from individuals to the sub-population level. Aggregation is not512

necessary using this approach, which implies that researchers can make use of all of their513

genetic data. Although estimating the edge weights within a SA modeling framework may514

not be possible for every existing dataset, future studies could be designed to meet these515

requirements.516

Finally, it is important to keep in mind that correlation does not equal causation. Many517

di�erent environmental and biological processes can a�ect genetic dissimilarity between518

individuals and populations, and it is possible that patterns in resistance covariates and519

distance measures mimic patterns produce by the true causal factor (Rellstab et al. 2015).520

For example, if alleles are incorrectly assumed to be neutral, selection may be causing a521

particular pattern in genetic di�erentiation rather than resistance to gene �ow (Whitlock522

and McCauley 1999). Alternatively, migration and drift may not have reached equilibrium523
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for populations that are currently expanding and as a result, patterns in genetic524

di�erentiation would not necessarily re�ect current patterns in gene �ow (Whitlock and525

McCauley 1999). Even when assumptions such as these are correct, multiple landscape526

genetic hypotheses are often highly correlated (Murphy et al. 2008); as was the case here,527

where we observed similar correlations between genetic data generated using an IBD model528

(DIBD) and an IBR estimating model (Appendix S2). Thus, it is important that a priori529

hypotheses describing the e�ects of landscape resistance on gene �ow are carefully530

constructed based on current scienti�c knowledge, and tested using sophisticated and531

robust modelling approaches (Cushman and Landguth 2010), such as those described here.532

Conclusions533

There is an undeniable need for quantitative methods in landscape genetics that can be534

used to explore questions about spatial structure in genetic datasets. SA models provide a535

natural framework to investigate those questions. Spatial autocorrelation underpins536

common evolutionary-process hypotheses in landscape-genetic studies and thus it is537

sensible to use a statistical method that incorporates spatial autocorrelation (Balkenhol et538

al. 2009). SA models are designed to describe the neighborhood structure in spatially539

correlated network data and provide a �exible probabilistic framework used to make540

inferences about the e�ects of habitat selection and movement preferences on gene �ow.541

The data model for these network-level analyses may include raw genetic data or genetic542

distance matrices, as well as covariates on nodes and edges. Covariates representing543
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multiple evolutionary-process hypotheses can also be assessed within a single modeling544

framework, which produces interpretable parameter estimates for resistance components,545

with uncertainty estimates, so that inferences can be made about their relative in�uence546

within and between populations. In addition, standard model selection methods, such as547

regularization or information-theoretic-based approaches, may be used to compare and548

select among models (Hooten and Hobbs 2015); while predictions, with estimates of549

uncertainty, can be made at unobserved locations or under di�erent land-use or climate550

scenarios. The ability to predict provides management bene�ts (Storfer et al. 2007), but551

can also be used to validate models using k-fold cross-validation. Most notably, the ability552

to account for missing data within the SA model means that a contiguous data model can553

be used when resistance values are estimated. Thus, a priori assumptions about the spatial554

location of edges between non-contiguous nodes, the relative in�uence of individual555

resistance covariates, and the overall resistance between nodes are avoided. Closer556

collaboration between ecologists and spatial statisticians will lead to new methods that are557

speci�cally designed to answer spatial and spatio-temporal questions about connectivity in558

landscape-genetic studies.559
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Tables749

Table 1: The Akaike Information Criteria (AIC) values for the models based on simulated

genetic distance (DIBD, DIBR, DIBB) and the three resistance models: isolation by distance

(IBD), isolation by resistance (IBR), and isolation by barrier (IBB).

Genetic Distance Resistance Model AIC

DIBD IBD 22518.94

DIBD IBR 22520.23

DIBD IBB 22527.61

DIBR IBD 22589

DIBR IBR 22573.6

DIBR IBB 22588.43

DIBB IBD 20414.75

DIBB IBR 20399.52

DIBB IBB 20342.68
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Figure Captions750

Figure 1. The data format of the spatially structured ecological network a�ects the way751

that edge weights are generated. Resistance covariates for contiguous nodes are based on752

node characteristics, but can be node- and/or edge-based for non-contiguous nodes.753

Regardless of the data format, a priori assumptions about the neighborhood structure,754

edge location, and/or resistance values are required and these assumptions in�uence how755

resistance is calculated and represented in the model. When a priori assumptions are made756

about the importance of resistance values, they must be aggregated to produce an overall757

resistance value before model-based assessment takes place. This is not the case for758

resistance covariates, where importance is assessed for each covariate within a model-based759

framework.760

Figure 2. A summary of common model types and their ability to meet modeling needs for761

a typical landscape genetics study.762

Figure 3. Spatially structured ecological networks contain nodes and edge weights763

represented in network or matrix format (a). The matrix W represents edge weights764

between node pairs, while DW is a diagonal matrix containing the sum of the edge weights765

for each node's �rst-order neighbors (e.g., (Dw)1,1 = 1 + 4 + 3 = 8). These two matrices766

contain information about the conditional structure implied by the edges and is used to767

generate the precision matrix, Q, in a conditional autoregressive (CAR) model (b). Two768

nodes that are conditionally independent in the precision matrix (e.g., Q3,2 = 0) may still769

be spatially dependent (i.e., correlated) through intervening nodes (e.g., Σ3,2 ̸= 0) in the770
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covariance matrix, Σ = Q−1 (c) and the correlation matrix (e). The precision matrix771

de�nes the partial correlation among measurements on nodes (d) after accounting for the772

in�uence of intervening nodes.773

Figure 4. Resistance surfaces for the isolation by distance (IBD), isolation by resistance774

(IBR), and isolation by barrier (IBB) evolutionary-process hypotheses.775

Figure 5. (a) The isolation-by-resistance (IBR) model (DIBR ∼ IBR) shows that776

conductance (inverse resistance) has a non-linear relationship with the IBR resistance777

covariate (solid black line). The dotted lines denote the 95% con�dence intervals. (b)778

Similar patterns are observed in a map of mean conductance, which is highest in areas with779

low resistance covariate values.780
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Figures781

Figure 1:
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